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Abstract
Twist and writhe measure basic geometric properties of a ribbon or tube. While
these measures have applications in molecular biology, materials science, fluid
mechanics and astrophysics, they are under-utilized because they are often
considered difficult to compute. In addition, many applications involve curves
with endpoints (open curves); but for these curves the definition of writhe
can be ambiguous. This paper provides simple expressions for the writhe of
closed curves, and provides a new definition of writhe for open curves. The
open curve definition is especially appropriate when the curve is anchored at
endpoints on a plane or stretches between two parallel planes. This definition
can be especially useful for magnetic flux tubes in the solar atmosphere, and
for isotropic rods with ends fixed to a plane.

PACS numbers: 02.10.Kn, 82.35.Lr, 87.15.Aa, 02.40.−k

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The writhe of a curve measures how much it kinks and coils. If we add a second curve nearly
parallel to the first, we can further measure how much the second curve twists about the first.
The two curves might be the two sides of a ribbon, or the two strands of a DNA molecule,
or two field lines within a bundle of magnetic flux. When the two curves are both closed
(no endpoints) then we can also measure their linking number. Călugăreanu (1959) proved
a remarkable theorem showing that twist plus writhe equals linking number. The magnetic
analogue states that the total magnetic helicity of a flux tube can be subdivided into twist
helicity and writhe helicity (Berger and Field 1984, Moffatt and Ricca 1992).

Each of the three quantities in the Călugăreanu theorem has special properties. Linking
number is the only topological invariant: deformations of the two curves which do not let
them pass through each other do not change the linking. If we call one curve the axis and
the other the secondary curve, then writhe only depends on the axis curve (unlike linking and
twist). Finally, both linking number and writhe are double integrals, whereas twist is the single
integral of a well-defined density (but, as we will show in this paper, linking and writhe can
also be defined as single integrals in a fixed spatial direction).
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The simplest definitions of twist and writhe apply to curves which close upon themselves.
This is fine for closed DNA molecules (such as plasmids), but many applications involve
curves with endpoints (for example, human DNA, most polymer chains and magnetic fields
with endpoints on a boundary surface). One approach for an open DNA molecule involves
adding a straight line segment or planar curve to connect the endpoints, then using the closed
formulae to calculate writhe or linking (Fuller 1978, Vologodskii and Marko 1997, van der
Heijden et al 2004). Open writhe can also be defined by closing the associated tantrix curve
(see section 6) (Starostin 2005). This paper gives a different method for calculating open
writhe, especially suitable for curves or field lines with endpoints on a plane or sphere.

In particular, we show that linking, twist and writhe can be calculated using a single
integral in one constant direction in space (e.g. height z). The price we pay is that the curve
must be divided into pieces at turning points in z. The integral includes nonlocal terms
describing interactions between the pieces, as well as local terms for each piece.

Section 2 reviews the basic ideas behind linking, twist and writhe, following the notation
and description in Aldinger et al (1995). This section also reviews the idea of a twisted tube,
or isotropic rod (van der Heijden and Thompson 2000), which encloses a curve like a cable
encloses the wire inside. In some respects tubes are simpler objects than ribbons as they are
more symmetric.

Section 3 reviews how linking number can be calculated using a single integral in z. This
procedure is a simple example of using Kontsevich integrals (Kontsevich 1993, Chmutov and
Duzhin 2000, Berger 2001).

Section 4 applies similar techniques to the closed writhe calculation. Theorem 3 gives
the central theorem of this paper: that the rate of growth of the writhe of a curve in the z

direction is well defined, in the sense that it is independent of how its surrounding tube is
twisted. Theorem 4 gathers together the expressions for writhe in terms of z integrals.

Section 5 defines an open writhe quantity we will call the polar writhe. The polar writhe
measures the writhe of a curve between two parallel planes, using the expressions found in
section 4.

Section 6 relates the results of the previous sections to a geometric construction called the
tantrix curve. It also discusses the results in the context of a theorem of Fuller (1978), which
compares the writhe of two curves, one of which can be deformed into the other.

Section 7 gives two examples of writhe computations: first for a twisted parabola with
both endpoints on one plane, and secondly for an inclined helical curve.

The more lengthy theorems are placed in an appendix.

2. Definitions and notation

2.1. Ribbons

We will be primarily interested in the geometry of a (non-self-intersecting) curve x. As this
curve will often be surrounded by other almost parallel curves, we will call it the axis curve.
Let positions on the axis curve x be given by x(t), for some parametrization t. The most natural
parametrization (but not always the easiest to calculate with) has t = s, where s measures
arclength from some arbitrary starting point. We assume x(s) is smooth (we will need at least
two derivatives). The tangent vector to the axis curve is

T̂(s) = dx
ds

. (1)

A tangent vector to a curve parametrized by arclength has unit norm, so |T̂(s)| = 1.
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Figure 1. An axis curve x(t), together with a secondary curve y(t).

We now surround our axis curve with structure. To form a ribbon (or a DNA molecule)
we will need a secondary curve y (see figure 1). First, let V̂(t) be a unit vector normal to T̂(t),
i.e. V̂(t) · T̂(t) = 0. This vector points to y at the point y(t) = x(t) + εV̂(t). We generally set
ε � 1 to keep the curves close together. Note that, while we can parametrize both curves by
t = s, the parameter s measures arclength along the axis curve, not along the secondary curve.

2.2. Tubes

Suppose we draw a circle of radius ε centred on x(t), and perpendicular to T̂(t). If we now join
up the circles for all t, we obtain a tube enclosing the axis curve. This tube will not intersect
itself if we choose ε small enough. Suppose the tube contains a secondary curve y. Then the
tube surface can be given coordinates (t, φ) where the secondary curve defines φ = 0, i.e.,
y(t) has coordinates (t, 0). A particular choice of y and hence a particular coordinate system
is called a framing. More precisely, if we let Ŵ = T̂ × V̂, then the surface point y(t, φ) is
given by

y(t, φ) = x(t) + ε(cos φV̂(t) + sin φŴ(t)). (2)

In fact, we can fill the tube surface with parallel curves. Given a constant angle φ = β

we can define a curve parallel to y(t) = y(t, 0) passing through the points y(t, β). We define
a twisted tube as a tube covered by a family of parallel curves for 0 � β < 2π (see figure 2).
A twisted tube with elastic energy is called an isotropic rod (van der Heijden and Thompson
2000).

2.3. The Frenet frame

The local geometry of x provides an intrinsic set of basis vectors and coordinates, called the
Frenet frame. Let

κ =
∣∣∣∣dT̂(s)

ds

∣∣∣∣ (3)

be the curvature of x at s. The normal vector is defined (where κ �= 0) as

N̂ = 1

κ

dT̂(s)

ds
. (4)

As T̂(s) is always a unit vector, N̂(s) · T̂(s) = 0. We can now define a third vector, the
binormal, as

B̂ = T̂ × N̂. (5)
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Figure 2. Two twisted tubes with the same axis curves but with differing twist functions ( framings).

The three vectors {T̂, N̂, B̂} form a right-handed orthonormal basis, and satisfy the Frenet–
Serret equations

dT̂(s)

ds
= κN̂, (6)

dN̂(s)

ds
= τ B̂ − κT̂, (7)

dB̂(s)

ds
= −τ T̂, (8)

where τ is the torsion. Outside of critical points where κ = 0, we can choose V̂(s) = N̂(s) to
give us a framing for a tube surrounding the axis curve.

2.4. Review of linking number, twist and writhe for closed curves

2.4.1. Crossing number. Suppose two curves are projected onto a plane whose normal points
in the direction n̂. We can also regard a projection angle as a viewing angle, i.e., n̂ gives
the direction to a distant observer. In the projection plane the curves will cross each other
some number of times. Let C(n̂) count the number of positive crossings minus the number
of negative crossings. For two distinct closed curves C(n̂) is independent of n̂. Counting
crossings can be a convenient method of calculating linking number and writhe (Orlandini
et al 1994).

2.4.2. Linking number. The Gauß linking number is defined as a double integral over x (with
points labelled x(s) and tangent Tx(s)) and y (with points labelled y(s ′) and tangent Ty(s

′)):

Lk ≡ 1

4π

∮
x

∮
y

Tx(s) × Ty(s
′) · x(s) − y(s ′)

|x(s) − y(s ′)|3 ds ds ′. (9)

(i) Lk is invariant to deformations of the two curves as long as the two curves are not allowed
to cross through each other.

(ii) Lk is an integer.
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(iii) Lk equals half the signed number of crossings of the two curves as seen in any plane
projection:

Lk = 1
2C(n̂). (10)

(iv) Lk is independent of the direction of the axis curve, i.e. Lk does not change if s → −s.
(For two arbitrary curves, Lk changes sign if one of the two curves reverses its direction.
However, for ribbons both curves must change direction together.)

2.4.3. Writhe

Wr ≡ 1

4π

∮
x

∮
x

T̂(s) × T̂(s ′) · x(s) − x(s ′)
|x(s) − x(s ′)|3 ds ds ′. (11)

(i) Wr depends only on the axis curve x.
(ii) Wr equals the signed number of crossings of the axis curve with itself, averaged over all

possible projection angles (i.e. over all directions on the sphere S2).
(iii) Wr is independent of the direction of the axis curve.

2.4.4. Twist

Tw ≡ 1

2π

∮
x

T̂(s) · V̂(s) × dV̂(s)

ds
ds (12)

= 1

2π

∮
x

1

|v|2(s) T̂(s) · v(s) × dv(s)

ds
ds (13)

where v = εV̂.

(i) Tw has a local density along the curve, i.e. it is meaningful to write

Tw = 1

2π

∮
x

dTw

ds
ds. (14)

(ii) dTw/ds measures the rotation rate of the secondary curve about the axis curve. At each
point on the axis curve x, define the plane perpendicular to Tx(s). The offset vector V̂(s)

lives in this plane, and rotates at a rate

T̂(s) · V̂(s) × dV̂(s)

ds
= 2π

dTw

ds
. (15)

(iii) For two neighbouring magnetic field lines, the twist is related to the parallel electric
current. Let J = ∇ × B/µ0 be the electric current associated with the magnetic field B,
and J‖ = J · B/|B|. Then

dTw

ds
= µ0J‖

4π |B| . (16)

Similarly, if we measure how much two neighbouring flow lines in a fluid twist about
each other, then

dTw

ds
= ω‖

4π |V| , (17)

where V is the fluid velocity and ω is the vorticity.
(iv) Tw is independent of the direction of the axis curve. For example, suppose the axis is a

vertical straight line, and the secondary is a right helix (positive twist). Turning the two
upside down will still give a right helix of the same pitch.
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Figure 3. Two closed curves with four crossings. All four are negative (examples of negative
and positive crossings are shown to the right of the curves). The linking number equals half the
number of signed crossings, i.e. Lk = −2. Alternatively, this linking number can be calculated by
adding up the net winding angles �	ij between pieces of the curves (and dividing by 2π ). Here
�	13 = �	14 = �	24 = 0, while �	23 = −4π .

2.5. The Călugăreanu theorem

Lk = Tw + Wr . (18)

Note that the writhe (11) looks like the linking number (9) applied with both integrals
along the axis curve. The Călugăreanu formula can be derived by calculating the linking
number in the limit that the ribbon width ε shrinks to zero. In this limit, a singularity appears
in the integrand along the set of points (‘the diagonal’) s = s ′. This is a modest singularity
which, when integrated over a small neighbourhood of the diagonal, gives the twist Tw.

3. Linking number in terms of winding numbers in the z direction

The Gauß formula equation (9) gives linking number as a double integral. Sometimes it can
be easier to calculate a sum of single integrals along a preferred direction (say along the
vertical z axis). We note that the Kontsevich integral for Vassiliev invariants in knot theory
(Kontsevich 1993) can be calculated using iterated integrals in one direction (see Berger 2001
for an elementary introduction, and Chmutov and Duzhin 2000 for a thorough treatment). In
this section we review the derivation of a directional expression for the linking integral. This
will lead in the next section to a directional expression for the writhing number for closed
curves. In many cases these integrals may be particularly easy to calculate. Furthermore,
these integrals will provide natural definitions for the linking, twist and writhing numbers of
open curves with endpoints on a boundary plane or on two parallel boundary planes.

The key to these expressions is the notion of rotation, or winding, about a fixed direction
(which we will take to be the z axis). Suppose we scan how two curves evolve in the z

direction. Different parts of the curves wind about each other as we scan upwards (see
figure 3). Measuring the net winding angle will lead us to the linking number. Note that as
Lk is invariant to rotations, a different choice of fixed direction will give the same linking
number.

Consider two curves xi and xj . For the moment suppose that these curves always travel
upwards in z, i.e., along each curve dz/ds > 0 where s is arclength. We can then use z to
parametrize the curves, and label points as xi (z) or xj (z). Let the relative position vector at
height z be rij (z) = xj (z) − xi (z). Note that rij (z) is parallel to the xy plane. We will let
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	ij (z) be the orientation of this vector with respect to the x axis; as we travel upwards in
z, rij (z) may rotate, changing 	ij (z). This rotation of the relative position vector about the z

axis will give us a simple method of calculating linking and writhe. Let ẑ be the unit vector in
the z direction. The rotation rate is given by

d	ij

dz
= ẑ · rij (z) × r′

ij (z)

|rij (z)|2 . (19)

The net winding angle (which can be more than 2π ) between two heights z1 and z2 is simply
the integral of this rate:

�	ij =
∫ z2

z1

d	ij

dz
. (20)

We note that Tw arises from rotation of the secondary curve about a constantly varying
axis direction. Here we are expressing Lk and Wr in terms of rotation about the (non-varying)
z direction.

Now let us drop the assumption that the two curves always travel upwards. A generic
curve (of finite length) has a finite set of discrete points where ds/dz = 0. These points divide
the curve into pieces where ds/dz > 0 or dz/ds < 0. Say curve x has n of these pieces, and
label them with i = 1, . . . , n. Piece i starts at some height zi and ends at height zi+1. Let σi(z)

tell us whether piece i exists at height z, and whether it is rising or falling:

σi(z) =


1, z ∈ (zi, zi+1) and ds/dz > 0,
−1, z ∈ (zi, zi+1) and ds/dz < 0,
0, z �∈ (zi, zi+1).

(21)

Theorem 1. Let curve x have pieces i = 1, . . . , n and curve y have pieces j = 1, . . . , m. Let
	ij be the orientation of the relative vector rij = yj (z) − xi (z). The linking number between
the two curves is given by

Lk =
n∑

i=1

m∑
j=1

1

2π

∫ ∞

−∞
σiσj

d	ij

dz
dz (22)

=
n∑

i=1

m∑
j=1

σiσj

2π
�	ij . (23)

The proof will be given in the appendix. This theorem gives the linking number as a sum
of single integrals, or alternatively in terms of a sum of winding angles �	ij .

Let zmin and zmax be the minimum and maximum heights which both curves reach, and
let zmin < z0 < zmax. If we now define

L̃(z0) =
∫ z0

−∞

dL̃
dz

dz =
∫ z0

zmin

dL̃
dz

dz, where (24)

dL̃
dz

=
n∑

i=1

m∑
j=1

dL̃ij

dz
,

dL̃ij

dz
= σiσj

2π

d	ij

dz
, (25)

then L̃(z0) gives the net winding of the curves below z0, and L̃(zmax) = Lk . Note that at
a given height z0, L̃(z0) will not be a topological invariant to arbitrary motions of the two
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curves. However, it does measure something about how much the two curves are entwined in
the half-space below z0. There remains a restricted sense of topological invariance:

Theorem 2. The net winding number L̃(z0) is an invariant to the restricted set of motions
which vanish at z = z0 (such motions do not move the intersection points of the curves with
z = z0, nor do they allow other parts of the curves to pass through this plane).

Proof of theorem 2. The total linking number Lk is invariant to all motions (as long as the
two curves do not pass through each other). Consider the net winding of the curves above z0,

L̃(z0, zmax) ≡ Lk − L̃(z0) =
∫ zmax

z0

dL̃
dz

dz. (26)

First consider the restricted set of motions vanishing at and above z0. As the curves do not
change their shape above z0, the net winding above this plane L̃(z0, zmax) does not change.
Since Lk is invariant, their difference L̃([zmin, z0]) = L̃(z0) = Lk − L̃([z0, zmax]) does not
change either. Thus motions below z0 do not affect the net winding of the curves below.

Now suppose there are motions both above and below z0, but the boundary plane z = z0

remains frozen. The extra motions above z0 do not change the shape of the curves below, so
the conclusions of the previous paragraph still hold.

4. The writhe of closed tubes

4.1. Decomposition into local and nonlocal parts

We can handle the writhe of a closed tube in a similar manner to the linking number. We employ
the techniques from the previous section to calculate Lk , then subtract Tw. As mentioned in
section 2.4.3, for a whole curve Wr = Lk − Tw only depends on the axis curve. For example,
figure 2 shows two twisted tubes with the same axis curve. As they have different families
of secondaries (i.e. different framings), they have differing values of Lk and Tw, but the same
value of Wr .

Suppose we now define T̃ (z0) in the same way as L̃(z0). This will give the net twist of
the section or sections of a curve lying below the plane z = z0. We would then wish to define
a new quantity W̃(z0) ≡ L̃(z0) − T̃ (z0). But does this new quantity depend only on the axis
curve? If so, then we have some justification for interpreting it as the part of the total writhe
arising from the geometry of the axis curve below z0.

Unfortunately, for ribbons L̃(z0) − T̃ (z0) depends on the shape of the secondary as
well as the axis. The good news, however, is that for twisted tubes the construction works!
In particular, theorem 3 below shows that if we average L̃(z0) − T̃ (z0) over the family of
secondaries, the result depends only on the axis curve, as desired. There is no longer any
dependence on framing.

We first define

W̃(z0) =
∫ z0

zmin

dW̃(z)

dz
dz, (27)

T̃ (z0) =
∫ z0

zmin

dT̃ (z)

dz
dz (28)

where dW̃/dz and dT̃ /dz remain to be determined. For consistency with the total writhe and
twist, we must have W̃(zmax) = Wr and T̃ (zmax) = Tw.
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To simplify our expressions, we will denote derivatives with respect to z with a prime.
Begin by again considering an axis curve x with a nearby secondary curve y = x + εV̂ twisting
around it. The curves are divided into pieces xi and yi at extrema in z. Along each piece we
can calculate the twist according to equation (12). Let the contribution from piece i be Twi .
Piece i travels from height zmin

i to height zmax
i . Recall that σi gives the sign of ds/dz (so if

σi = +1 then s = smin
i at z = zmin

i ). Then

Twi =
∫ smax

i

smin
i

dTwi

ds
ds =

∫ zmax
i

zmin
i

dTwi

ds

∣∣∣∣ds

dz

∣∣∣∣ dz, (29)

and thus

T̃ ′
i (z) = dTwi

ds

∣∣∣∣ds

dz

∣∣∣∣ = σi

2π
T̂i (z) · V̂i (z) × V̂′

i (z). (30)

Next consider the net winding number L̃. Recall that this sums winding numbers over
all pairs of pieces xi and yj . A particular piece of the axis curve xi winds locally about its
nearby secondary piece yi , and nonlocally about other far away pieces of the secondary curve
yj , j �= i. Thus we have

L̃′(z) =
n∑

i=1

L̃′(xi , yi )(z) +
n∑

i=1

n∑
j=1

i �=j

L̃′(xi , yj )(z). (31)

For the nonlocal terms, we can substitute xj for yj , since the distance ε between the axis and
secondary curve is much smaller than the distance between pieces i and j . Thus

L̃′(xi , yj ) = L̃′(xi , xj ) ≡ L̃′
ij . (32)

Letting L̃′
i ≡ L̃′(xi , yi ),

L̃′(z) =
n∑

i=1

L̃′
i (z) +

n∑
i=1

n∑
j=1

i �=j

L̃′
ij . (33)

The double sum includes both (i, j) and (j, i) pairs. This happens because yi winds about
axis piece xj , just as xi winds about the secondary piece yj , and both must be included. Note
that the nonlocal terms L̃′

ij (z) do not depend on the choice of secondary curve y, but the local
terms L̃′

i (z) do.
We can decompose twist T̃ ′ and writhe W̃ ′ in a similar manner: there is only a local

contribution to T̃ ′
i in equation (30), so

T̃ ′ =
n∑

i=1

T̃ ′
i (z). (34)

Writhe will contain both local and nonlocal terms:

W̃ ′ =
n∑

i=1

W̃ ′
i (z) +

n∑
i=1

n∑
j=1

i �=j

W̃ ′
ij (z), (35)

W̃ ′
i (z) = L̃′

i (z) − T̃ ′
i (z), (36)

W̃ ′
ij (z) = W̃ ′

ji(z) = L̃′
ij (z) = σiσj

2π
	′

ij (z). (37)
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In what follows, it will often be convenient to decompose the tangent vector T̂ into its z

component Tz and its perpendicular components T̂⊥. Suppose T̂ is oriented at an angle θ with
respect to the z axis. We will define

λ = cos θ = Tz = dz/ds, (38)

µ = sin θ = |T̂⊥|. (39)

4.2. The local contribution to the writhe

As mentioned at the beginning of the previous section, we must average the quantity
L̃(z) − T̃ (z) over all secondary curves in a twisted tube. The following theorem shows
that this procedure removes all dependence on framing (i.e. dependence on how the tube is
twisted).

Theorem 3. Let

W̃ ′
i (z) = 〈

L̃′
i (z) − T̃ ′

i (z)
〉
, (40)

where 〈 〉 denotes an average over all secondary curves in the surface of a twisted tube. Then
W̃ ′

i (z) is independent of framing, and is given by

W̃ ′
i (z) = 1

2π

1

(1 + |λi |) (T̂i × T̂′
i )z; (41)

in terms of the curvature κ and binormal B̂,

W̃ ′
i (z) = 1

2π

1

(1 + |λi |)
κiBzi

λi

. (42)

Note that this implies W̃(z0) only depends on the shape of the section or sections of
the axis curve in the half-space below z0. The proof of framing independence is somewhat
detailed, and is left for the appendix. Here we will calculate W̃ ′

i (z) given a particularly simple
choice of framing, where V̂ is always horizontal.

At each point on the axis, we define three orthonormal vectors {T̂, f̂, ĝ} starting with the
tangent vector, with

f̂ = ẑ × T̂
µ

; (43)

ĝ = T̂ × f̂ (44)

(points where T̂ is parallel to the z axis do not cause any real difficulty, as alternative framings
can be employed near them which do not change the final answer). We now choose V̂ = f̂
and Ŵ = ĝ.

The twist number expression equation (30) becomes (using Tz = dz/ds = σi |λi |)

2π T̃ ′
i (z) = σi

µ2
i

T̂i · (ẑ × T̂i ) × (ẑ × T̂′
i ) (45)

= σi

µ2
i

Tz(T̂i × T̂′
i )z (46)

= |λi |
µ2

i

ẑ · T̂i × T̂′
i . (47)
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Next, rotation of the axis and the secondary curve about each other along segment i
contribute to the linking number. The relative position vector is yi (z) − xi (z) = ε̂f(z), so

2π L̃′
i = d	

dz
= ẑ · f̂i × f̂ ′

i (48)

= 1

µ2
i

(T̂i × T̂′
i )z. (49)

Taking the difference between local linking and twist,

2πW̃ ′
i = 1 − |λi |

µ2
i

(T̂i × T̂′
i )z = 1

1 + |λi | (T̂i × T̂′
i )z. (50)

Now,

T̂′ = 1

λ

dT̂
ds

= κ

λ
N̂, (51)

so

(T̂ × T̂′)z = κ

λ
Bz. (52)

These results (equations (25), (37) and (41)) can be summarized as follows:

Theorem 4.

Wr = W̃local + W̃nonlocal, (53)

W̃local = 1

2π

n∑
i=1

∫ zmax
i

zmin
i

1

(1 + |λi |) (T̂i × T̂′
i )z dz, (54)

W̃nonlocal =
n∑

i=1

n∑
j=1

i �=j

σiσj

2π

∫ zmax
ij

zmin
ij

	′
ij (z) dz. (55)

4.3. The nonlocal contribution to the writhe

As an example, we will consider a simple heart shaped curve (see figure 4). The curve divides
into four pieces, so there will be six pairs of pieces going into the double sum. First,

W̃12 = − 1

2π

∫ zB

zC

	′
12(z) dz. (56)

Let φB be the orientation of the tangent vector at B in the xy plane, i.e. tan φB = TBy/TBx .
Also let 	PC be the orientation of the vector pointing from P to C. Then 	12 starts out pointing
in the direction φB and ends pointing in the direction 	PC . Thus

W̃12 = 1

2π
(	PC − φB + 2πw12) (57)

for some integer w12 (which keeps track of complete turns).
The remaining possibilities work the same way, except for 	14 which starts out pointing

in the opposite direction to φA. Thus

W̃13 = 1

2π
(	BQ − 	PC + 2πw13), (58)
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A

B

P

Q R

S
C

D

2

3

1
4

Figure 4. The axis of the tube is a heart-shaped curve with maxima at points B and D, and minima
at points A and C. For this example zD > zB > zC > zA. The points C, P and S are at height zC ,
while B, Q and R are at height zB . Piece 1 goes from A to B, piece 2 from B to C, piece 3 from C
to D, and piece 4 from D to A.

W̃14 = 1

2π
((φA ± π) − 	BR + 2πw14), (59)

W̃23 = 1

2π
(φC − 	BQ + 2πw23), (60)

W̃24 = 1

2π
(	BR − 	CS + 2πw24), (61)

W̃34 = 1

2π
(	CS − φD + 2πw34). (62)

The sum is (remember to include W̃21 = W̃12, etc)

W̃nonlocal = 1

π
(φA − φB + φC − φD) + 2w ± 1, w =

∑
i<j

wij . (63)

Thus we can conclude, without calculating the winding numbers wij (or worrying about
the dependence of φA, φB , etc, on the position of the branch cut), that

W̃nonlocal = 1

π
(φA − φB + φC − φD) − 1 mod 2. (64)

Calculating mod 2 can be useful in several situations: if the writhe is known to be small (i.e.
between − 1 and 1); if a curve is evolving smoothly from an initial configuration with known
writhe, so that the exact value can be calculated by continuity; or if one can calculate the exact
value numerically with low resolution, and then increase accuracy by comparing with the mod
2 formula.

The above result generalizes to all closed curves. We will consider a closed curve with n
pieces and hence n turning points. Suppose piece i stretches between a minimum at zmin

i and
a maximum at zmax

i . Note that these points will be labelled twice: for example, if piece i has
ds/dz > 0 then the point at zmax

i joins piece i with piece i + 1 and so zmax
i = zmax

i+1 .

Theorem 5. Let φ
(
zmin
i

)
and φ

(
zmax
i

)
be the angles with respect to the x axis of the tangent

vectors T̂
(
zmin
i

)
and T̂

(
zmax
i

)
. Then

W̃nonlocal = 1

2π

n∑
i=1

(
φ
(
zmin
i

) − φ
(
zmax
i

)) − 1 mod 2. (65)

(Proof in appendix.)



The writhe of open and closed curves 8333

5. The writhe of open curves

5.1. The polar writhe

The previous sections have shown that writhe can be calculated by dividing a closed curve at
maxima and minima in some coordinate z, then performing single integrals. The calculations
involve the quantities T̃ (z), L̃(z) and W̃(z) which integrate from −∞ to z. The quantity L̃
measures net winding of two curves about each other relative to the z direction. Note that if
we wish to consider the amount of winding between the planes z = z0 and z = z1 we need
only calculate L̃(z0, z1) ≡ L̃(z1) − L̃(z0). By theorem 2, L̃(z0) has topological meaning: it is
invariant to motions of the curve which vanish at the plane z = z0. Twist is a local quantity,
so it makes sense to ask how much twist occurs below the plane z = z0. What about writhe?

For twisted tubes it makes sense to define a writhe measure for the half-space below
z0 using W̃(z0): by theorem 3 this quantity is independent of framing, i.e., it only depends
on the axis curve. We can generalize this measure to arbitrary directions. Let us write
W̃(z0) = W̃(z0, ẑ) to explicitly show the dependence on the z direction. In the same way, let
q̂ be some other constant unit vector. Define q to be a Cartesian coordinate increasing in the
direction of q̂. Then we can define an open writhe W̃(q0, q̂) relative to the q̂ direction.

Also we can define

W̃(q0, q1, q̂) = W̃(q1, q̂) − W̃(q0, q̂) (66)

to be our writhe measure between the planes q = q0 and q = q1.
What should this writhe measure be called? We would love to use the term ‘directional

writhe’, since W̃(q0, q̂) depends on the direction q̂. Unfortunately, this term is already in
use. (Briefly, take a closed curve and make an exact duplicate. Then translate the duplicate
a small distance in the q̂ direction. The linking number between the original curve and its
duplicate is the directional writhe with respect to q̂. Averaging over all directions gives the
writhe (Aldinger et al 1995).)

We will instead call W̃(q0, q̂) the polar writhe with respect to q̂. The word ‘polar’ relates
to the poles of the tantrix sphere described in the next section. For simplicity, we will always
choose q̂ = ẑ and simply call the polar writhe below z0 by W̃(z0) and the polar writhe between
z0 and z1 by W̃(z0, z1).

Note that equations (54) and (55) do not involve arclength s except through the quantity
|λ| = |dz/ds|. Thus a reversal of the direction of the axis curve (equivalent to s → −s)
does not affect the polar writhe. In addition, while polar writhe in general depends on the
special direction q̂, a reversal q̂ → −q̂ does not change polar writhe; to see this for q̂ = ẑ, let
w = −z. We need to show that

W̃(z0, z1, ẑ) = W̃(−w1,−w0, ŵ). (67)

To see this, first note that the σiσj factor in equation (55) stays the same, as both σi and σj

reverse sign. Also,

(T̂i × T̂′
i )z = T̂i × dT̂i

dz
· ẑ = T̂i × dT̂i

dw
· ŵ. (68)

More subtly, the quantity

dθ

dz
→ dθ

dw
(69)

without change. For example, if we flip over a right helix, it remains a right helix (note
that a turn through an angle θ about the z axis is actually a pseudoscalar under the improper
transformation x → x, y → y, z → −z).
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Figure 5. A kinked magnetic filament in the solar corona on 27 May 2002. On the left is an image
from the TRACE 195 Å line. The right picture is from a numerical simulation by Török and Kliem
2005.

5.2. Example—simple loops

As an example, consider an open curve with endpoints on the same boundary plane z = 0.
We will call this a simple loop if there is only one turning point in z (at zmax). Such loops are
of importance in astrophysics: magnetic loops form in the solar atmosphere (see figure 5), and
may occur in the atmospheres of accretion disks. The loop will have two pieces, or legs.

Let the polar writhe of the loop be W̃ = W̃(0,∞). By equations (54), (55), and (65),

W̃ = W̃1 + W̃2 + 2W̃12, (70)

W̃1 = 1

2π

∫
1

1

(1 + |λ1|) (T̂1 × T̂′
1)z dz, (71)

W̃2 = 1

2π

∫
2

1

(1 + |λ2|) (T̂2 × T̂′
2)z dz, (72)

W̃12 = 1

2π
(	12 − φ(zmax)) + w12. (73)

For modest writhing, one should only see at most one crossing of the two legs when
viewed from the side. As writhing averages crossing numbers over all projection angles, this
would imply W̃12 < 1 (thus setting w12).

5.3. Polar writhe and magnetic tubes

Linking number can be applied to vector fields as well as curves. Suppose the integral curves
(field lines) of a divergence-free vector field are all closed. The helicity integral measures the
linking number of the field lines, averaged over all pairs of field lines, and weighted by flux
(Moffatt 1969). Even when the field lines are ergodic and do not close upon themselves this
picture is still valid (Arnold and Khesin 1998). Consider a magnetic field confined to a thin
closed tube with net flux . The helicity H of the tube can be decomposed into contributions
from twist and writhe, i.e. H = Tw2 + Wr

2 where Wr is the writhe of the axis of the tube,
and Tw measures the average twist of other field lines (acting as secondary curves) about the
axis (Berger and Field 1984, Moffatt and Ricca 1992).
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Figure 6. A 2–3 torus (trefoil) knot and its associated tantrix. The upper left figure shows the
knot with a tangent vector drawn at one point along the curve. Below, the vector has been drawn
so that its tip lies on a unit sphere. The figure to the right displays the full tantrix for the knot (for
this curve, Wr = 3.52).

One often needs to calculate the helicity contained within some region of space V . If field
lines cross the boundary S of this region, then they will not be closed within the region. In this
case helicity can be measured relative to the minimum-energy vacuum magnetic field (Berger
and Field 1984).

Suppose we slice space into a set of layers separated by parallel planar boundaries at
z = z0, z1, . . . . Then the helicity of all space will equal the sum of the helicities of each layer.
This situation corresponds to the constructions made in this paper. The helicity of all space, in
fact, can be written as an integral in z corresponding to equation (22) averaged over all pairs
of field lines. As a consequence, we can still write the helicity content of part of a flux tube,
sliced between planes zi and zj , as a sum of twist and writhe:

H(zi, zj ) = T̃ (zi, zj )
2 + W̃(zi, zj )

2. (74)

6. Writhe and tantrix area

We can increase our geometrical understanding of writhe by constructing tantrix curves. The
tangent vector T̂ (as it is by definition a unit vector) maps points on a curve to points on a
unit sphere. Call this the tantrix sphere, and let the tantrix or tantrix curve be the path the tip
of the tangent vector takes on this sphere (see figure 6). An important theorem (Fuller 1978,
Aldinger et al 1995) shows that the writhe of a closed curve is related to the spherical area A

enclosed by the tantrix sphere:

Wr = A

2π
− 1 mod 2. (75)

6.1. The local writhe term

Here we show that our expressions for the polar writhe of open curves also bear simple
relations to tantrix area. First consider a section of a curve for which ds/dz > 0, so that the
tantrix stays in the northern hemisphere of the tantrix sphere. For a single section like this,
there will only be a local contribution W̃local, as in equations (41) and (54).

Theorem 6. The polar writhe of a single curve section for which ds/dz > 0 equals area/2π

between the tantrix and the north pole (where the ends of the tantrix are joined to the north
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pole by geodesics). This area is defined to be positive if the tantrix winds about the pole in a
right-handed sense.

Similarly, the polar writhe of a single curve section for which ds/dz < 0 equals area/2π

between the tantrix and the south pole.

This theorem gives an exact number, not modulo 2. Note that a closed curve drawn on a
sphere divides the surface into two pieces; the curve winds about one piece in a right-handed
sense and the other in a left-handed sense (someone travelling due east on a latitude line will
sweep out a positive area between the latitude line and the north pole; but also a negative area
between the latitude line and the south pole).

Proof of theorem 6. Recall from equation (38) that Tz = λ = cos θ ; thus θ gives the
co-latitude on the tantrix sphere. Now

T̂′ dz = dT̂ = dθ θ̂ + sin θ dφ φ̂. (76)

Also ẑ × T̂ = sin θφ̂, so

(T̂ × T̂′) · ẑ dz = ẑ × T̂ · T̂′ dz = sin2 θ dφ, (77)

and so equation (41) gives

2πW̃ ′
local(z) = 1

(1 + |cos θ |) sin2 θ
dφ

dz
(78)

= (1 − |cos θ |)dφ

dz
; (79)

⇒ 2πW̃(z0, z1) =
∫ z1

z0

(1 − |cos θ |)dφ

dz
dz. (80)

For dφ/dz positive and θ < π/2, this gives the area swept out between the tantrix and the
north pole; if θ > π/2 it gives the negative of the area below the tantrix, that is, between the
tantrix and the south pole.

6.2. Equivalent closed curves

6.2.1. A curve stretching between two planes. One common technique for defining open
writhe consists of extending an open curve to a closed curve, then calculating closed writhe.
The result can depend on the extension used; van der Heijden et al (2004) use a planar curve
between the two endpoints x1 and x2 of the open curve; this method only works when the
tangents at the endpoints are in the same plane as x2 − x1. Starostin (2005) points out that if
the tantrix curve is closed by a spherical geodesic, the writhe (as computed by area enclosed
on the tantrix sphere) will be well-defined modulo 1. He shows that the axis curve can always
be extended in a manner which corresponds to geodesic extensions on the tantrix sphere.

The polar writhe definition does not depend on extending the open curve to a closed curve.
It has the advantage that if we chop up a curve into several pieces using parallel slices, then
the polar writhes of the slices sum up to the total writhe. However, simple extensions do exist
which close a curve in such a way that the polar writhe equals the writhe of the closed curve.

Consider a section of a curve x for which ds/dz > 0. Let the upper endpoint of this section
be at height z1, and the lower endpoint at height z−1. The corresponding tantrix section lies
entirely within the northern hemisphere. We can close the tantrix section by connecting its
two endpoints to the north pole along longitudinal geodesics.
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a1

b1

a -1-1

b-1-1

x

Figure 7. An open curve x has been extended by adding circle segments a1 and a−1, then vertical
lines b1 and b−1. This curve is a helix inclined by a small angle with respect to the vertical (so
the tantrix does not centre on the north pole). The helix winds through a phase of 1.9π . For this
curve, the polar writhe is W̃ = −0.145. The associated tantrix curve is also shown.

This corresponds to adding extensions to the axis section x (see figure 7). At the upper
endpoint x(z1) we attach a circular arc a1(z) which extends from z1 to some height z2 > 1.
The purpose of this arc is to smoothly align the tangent with the z axis; a1(z) has boundary
conditions a1(z1) = x(z1), a′

1(z1) = x′(z1) and a′
1(z2) = ẑ. Next we attach a vertical line

b1(z) to arc a1 at z2, i.e. a1(z2) = b1(z2) and a′
1(z2) = b′

1(z2) = ẑ. By equation (54) the
attachments a1 and b1 contribute nothing to the writhe. We extend the lower endpoint z−1

with arc a−1 and vertical line b−1 in a similar manner.
The vertical extensions b1 can extend to ±∞, so that the curve ‘closes at infinity’.

Alternatively, we can connect b1 and b−1 with a planar curve c to form a finite closed curve.
Here c should be chosen to lie in the plane defined by ẑ and the relative position vector between
the bottom of b1 and the top of b−1, i.e. b1(z2) − b−1(z−2). Such a curve will have zero local
writhe as measured by equation (54), and zero nonlocal writhe (equation (55)) as it does not
wind about the rest of the curve.

6.2.2. Loops. By loop we mean a curve (figure 8) residing in a half-space, with endpoints
on the boundary plane (for example, in the half-space z > 0 with endpoints at z = 0). This
case is most relevant to the astrophysical applications (figure 5). Here a closed curve with
equivalent writhe can be constructed in a similar manner to the previous example: first, we
join circular sections a1 and a−1 to the two endpoints. These sections lie below the boundary
plane, and have the purpose of smoothly changing the tangent direction to the vertical. The
corresponding tantrix curve receives extensions which join the ends to the North and South
poles via geodesics. Finally, a semicircle c closes the curve.

We have two alternatives: first, we can make the sections a1 and a−1 arbitrarily small.
In this case, they will have negligible nonlocal writhe (i.e. the winding between these two
segments becomes arbitrarily small). The local writhes of a1, a−1 and c all vanish. Thus the
extended curve will have a closed writhe equal to the polar writhe of x. Note that c will be in
the same plane as the line segment between the two endpoints of x. Secondly, we can have
a1 and a−1 of arbitrary (but equal) height. In this case, they may well wind about each other
through some angle. Here the extended curve has a different writhe than x, but the discrepancy
is understood as arising from the polar writhe below the boundary plane.
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a 1

a -1

x

c

Figure 8. An open curve x in the form of a loop with endpoints on the same horizontal plane has
been extended by adding circle segments a1 and a−1, then a semicircle c. The associated tantrix
curve is also shown. For this curve (see equation (90) with h = 1.5 and 	 = 3π/4), the polar
writhe above the plane is W̃ = 0.55.

6.3. The writhe of a closed curve

Theorem 6 for a single segment of a curve without turning points is exact. Here we demonstrate
the tantrix area theorem, equation (75), calculating up to mod 2. To simplify the discussion, we
will only consider a tantrix curve which does not cross itself, and so divides the tantrix sphere
into two regions. Tantrices which do cross themselves do not pose any special difficulties;
one can simply add up the areas of all subregions (see Aldinger et al for a more thorough
discussion).

One of the two spherical regions bounded by the tantrix contains the north pole. Let the
area of this region be AN . This is meant to be a signed area: if the tantrix encircles the pole
in the westward direction then AN will be negative. We wish to show that our expressions for
the writhe result in AN .

For a closed curve, theorems 4 and 5 give

Wr = 1

2π

n∑
i=1

[(
φ
(
zmin
i

) − φ
(
zmax
i

))
+

∫ zmax
i

zmin
i

(1 − | cos θ |)dφ

dz
dz

]
− 1 mod 2. (81)

Let us look at the contribution of a single piece i beginning and ending at turning points.
Each of these pieces has endpoints on the equator. Half of the pieces lie in the northern
hemisphere, and half in the south. Let m = n/2 count the number of pieces in each hemisphere.
We will divide the terms in equation (81) between northern and southern hemispheres; but it
will be useful to assign all the tangent angle terms to the southern part (we can do this because
the tangent angles are counted twice, e.g. φ

(
zmax
i

) = φ
(
zmax
i+1

)
if piece i is in the north):

Wr = (Wr north + Wr south) − 1 mod 2; (82)

Wr north = 1

2π

m∑
i=1

∫ zmax
i

zmin
i

(1 − | cos θ |)dφ

dz
dz; (83)

Wr south = 1

2π

m∑
i=1

[
2
(
φ
(
zmin
i

) − φ
(
zmax
i

))
+

∫ zmax
i

zmin
i

(1 − | cos θ |)dφ

dz
dz

]
. (84)

The northern terms in Wr north give the area swept out between the tantrix and the north
pole, as required. In fact, so do the southern terms, but this conclusion requires some
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further explanation. For each southern piece, the integral term gives the negative of the area
swept out between the tantrix and the south pole. However, the term 2

(
φ
(
zmin
i

) − φ
(
zmax
i

))
gives the total area between the longitude lines at φ = φ

(
zmax
i

)
and φ = φ

(
zmin
i

)
. This cancels

the negative area of the integral term, leaving the area between the tantrix and the north pole
as required. Summing all the northern and southern pieces gives the total area of the northern
region AN , so

Wr = 1

2π
AN − 1 mod 2. (85)

6.4. Comparison with Fuller’s �Wr formula

Fuller (1978) showed that the writhe of a closed curve x(t) could in some circumstances be
computed by comparison with a reference curve xref(t). In particular, suppose xref(t) is some
given closed curve, which can be smoothly deformed into x(t). During the deformation, we
require that at all times T̂ref(t)·T̂(t) �= −1 for all t (t need not be an arclength parametrization).
This means that corresponding points on the reference tantrix curve and the deformed tantrix
curve are never antipodal. In these circumstances

�Wr = Wr (x) − Wr (xref) = 1

2π

∮
T̂ref(t) × T̂(t)

1 + T̂ref(t) · T̂(t)
· (T̂′

ref(t) + T̂′(t)) dt. (86)

A rigorous proof can be found in Aldinger et al (1995). Cantarella (2005) shows that this
formula gives the area of the ribbon on the tantrix sphere between the two tantrix curves, and
extends the formula to polygonal curves.

For our purposes we wish to investigate how the formula works when xref is, in essence,
a vertical line. More explicitly, suppose that xref is a very large circle,

xref(t) = R(cos t, 0, sin t), R  1. (87)

Then near t = 0 the reference curve is to a good approximation vertical. The writhe of a
stretch of curve x of length order unity could then be compared to this vertical region. The
formula, with T̂ref = ẑ, gives

�Wr = 1

2π

∫
ẑ × T̂ref(t)

1 + Tz(t)
· T̂′(t)) dt (88)

= 1

2π

∫
1

1 + λ(t)
(T̂(t) × T̂′(t))z dt (89)

where λ = cos θ = T̂z. If we assume the reference curve has zero writhe, this gives the
writhe of x.

This result looks superficially similar to our expression for the local writhe, equation (54)
from theorem 4. There are two differences: first, equation (89) involves λ rather than its
absolute value |λ|. Secondly, theorem 4 adds an extra term, the nonlocal writhe equation (55),
to the total writhe. What is happening? Consider a small section of the tantrix curve from t
to t + dt . If it is in the northern hemisphere, the integrands in both equations (54) and (89)
are identical: they give the spherical area between the tantrix section and the north pole. But
if the tantrix section is in the southern hemisphere, the behaviour is quite different. The local
writhe equation (54) gives area below the curve down to the south pole, while equation (89)
still gives area above up to the north pole.

The differences become most apparent if we consider almost vertical sections of a curve
with small wiggles. For upward travelling curves the tantrix will be close to the north pole and
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hence sweep out a small area in between. Both equations (54) and (89) give a small number
as expected. But what happens when a section of curve travels almost vertically downward,
again with small wiggles? The local writhe equation (54) still reports a small contribution,
because there is little area between the tantrix section and the south pole. The �Wr formula
equation (89), however, assigns such a section a large amount of writhe, as it is measuring area
all the way up to the north pole. Maggs (2001) and Rossetto and Maggs (2003) have shown
that statistical distributions of writhe (as measured by �Wr ) for curves generated by random
walks can be strongly affected by fluctuations near the south pole.

The discrepancy between the two formulae lies in the treatment of nonlocal contributions
to the writhe. In order for our stretch of curve x to be reachable from the reference curve
by smooth deformations (never anti-podal) we must have x travelling upwards at the top and
the bottom of its range. It must then have turning points if part of it goes downwards. The
different sections which loop up and down can then wind about each other, contributing to the
nonlocal writhe term equation (55).

Thus, there are several advantages to employing the polar writhe formulae (54) and (55)
rather than the �Wr formula (89). First, there is no requirement of smooth never anti-podal
deformation from a reference curve. Secondly, the local writhe formula is more balanced:
upward and downward travelling curves (with corresponding northern and southern tantrices)
have integrands identical in magnitude, because of the absolute value signs. This is an
especially desirable property because total writhe does not change on reversal s → −s. Third,
the behaviour of equation (89) near the south pole can magnify experimental and numerical
errors, and affect statistical analyses (Maggs 2001): the integral is heavily weighted toward
small southern wiggles. Fourth, the polar writhe explicitly displays the influence of nonlocal
windings.

7. Examples

7.1. Twisted parabolas

Consider curves with two endpoints on one plane as in sections 5.2 and 6.2.2. Let

z(t) = 4ht (1 − t) 0 � t � 1;

f (t) =
((

t − 1

2

)
cos

	z(t)

h
,

(
t − 1

2

)
sin

	z(t)

h
, z(t)

)
,

(90)

where h gives the maximum height of the curve f (t) above z = 0, and 	 gives the maximum
amount that the loop has been twisted (see figures 8, 9 and 10). Note that W̃nonlocal = −	/π .
The local writhe is of the opposite sign to the nonlocal writhe, therefore decreasing the
magnitude of the total. As height increases, the influence of the local writhe becomes less
important. Curiously, at a particular height h ≈ 0.3734 the writhe vanishes, W̃ = 0, for all
values of 	.

Figure 9 to the lower right shows a picture of a twisted parabola as seen from above, with
	 = −π . Note that if we follow the curve from either end to the middle, the curve travels
both upwards and clockwise, resulting in a negative local writhe (whereas this curve has a
positive nonlocal writhe).

7.2. Helices

Here we consider the effect of rotation of the central axis on a helix

g(t) = (
sin(2πt), cos(2πt), 2π

(
t − 1

2

))
0 � t � 1. (91)
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Figure 9. Writhe W̃ = W̃(0, ∞) calculated for the twisted parabolas of section 7.1. The curve
displayed to the right has 	 = −π and h = 1, seen from the side and seen from above.

Figure 10. Twisted parabolas: W̃local, W̃nonlocal and total polar writhe W̃ = W̃(0,∞) for heights
h = 1 and h = 3.

The helix is rotated through an angle ψ about the x axis (see figure 11). For ψ < π/4 there
are no turning points in z, so no nonlocal writhe. Between ψ = π/4 and approximately
ψ = 0.301π , the endpoint at t = 1 still has the maximum z value, i.e. z(1) = zmax (also the
t = 0 endpoint has minimum height z(0) = zmin). Thus up to 0.3π the curve simply stretches
between the planes z = zmin and z = zmax, with endpoints on these planes. This is the situation
discussed in section 6.2.1. The tantrix curve closes upon itself, as the helix completes one
period of 2π . See figure 7 for a similar curve; for illustrative purposes this curve only makes
it to 1.9π . The writhe then equals the area inside the tantrix. As ψ increases to 0.3π , the
helix leans more and more, and the tantrix moves southwards, but the writhe stays constant at
W̃ = −0.29.

However, above ψ = 0.301π the t = 1 endpoint dips below the maximum point on the
curve. We no longer have the simple situation of a curve stretching between parallel planes,
and there are extra nonlocal writhe terms between the last part of the curve (between zmax and
the end) and the rest of the curve. As a consequence the polar writhe deviates away from
−0.29. This illustrates how the polar writhe may not be appropriate when endpoints lie within
the range in z, i.e. if zmin < z(0) < zmax or zmin < z(1) < zmax.
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Figure 11. Let x be a helical curve with a net turn of 2π is aligned along a central axis inclined by
an angle ψ with respect to the vertical. The polar writhe W̃ = W̃(−∞, ∞) = W̃(−zmin, zmax)

is shown as a function of ψ . Below is shown the curve for ψ = 0, ψ = 0.3π and ψ = 0.4π

(equation (91)).
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Appendix. Proofs of theorems

Proof of theorem 1. We will prove the theorem by counting crossings. Thus we employ
equation (10) to relate the linking number to the signed number of crossings as seen with
some projection angle. We will be particularly interested in projections perpendicular to ẑ, i.e.
with n̂(ψ) = cos ψx̂ + sin ψŷ for some azimuthal direction ψ (see Berger 1993 for a similar
procedure). Let C(ψ) be the number of crossings seen from direction ψ . The average signed
number of crossings seen from these side directions is

f̄ = 1

2π

∮ 2π

0
C(ψ) dψ. (A.1)

Now consider piece i of curve x and piece j of curve y. Suppose for the moment that both
of these curve segments point upwards, ds/dz > 0. Suppose also that their extent in the z

direction overlaps between z = z1 and z = z2. Then in this interval σi = σj = 1, and they
wrap around each other through a net angle

�	ij =
∫ z2

z1

d	ij

dz
dz. (A.2)

In other words, the relative position vector rij rotates through a net angle �	ij between z1

and z2.
We assert that for pieces i and j , the perpendicular crossing number is

f̄ ij = σiσj

�	ij

π
. (A.3)
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To demonstrate this, consider an observer at azimuthal angle φ. This observer will see a
crossing at heights z where the relative position vector rij points in the ±φ direction. Now
rij may rotate as it travels from z1 to z2. If rij swings all the way around n times between z1

and z2 (�	ij = 2πn) then each observer will see 2n crossings (n times for when the vector
points toward the observer, and n times for when the vector points away from the observer).
Thus the quantity �	ij relates to how many times each observer sees a crossing.

If |�	ij | < π some observers will not see a crossing; in this case, |�	ij |/π gives the
fraction of observers seeing a crossing. Note that rij may wiggle back and forth, i.e. d	ij/dz

may not stay the same sign. But in this case observers will see crossings of both signs, which
cancel out. Thus �	ij/π gives the net number of crossings, averaged over all projection
angles, i.e. f̄ ij .

So far we have assumed that σi = σj = 1. In general, the sign of the crossings will be
positive if σi = σj and �	ij > 0. The sign becomes negative if one of the σ s changes sign.
Thus �	ij must be weighted by the product σiσj , leading to equation (A.3).

We now sum over all pairs of curve segments to give

f̄ = 1

π

N∑
i=1

M∑
j=1

σiσj�	ij . (A.4)

Finally, for a closed link, the signed number of crossings is the same for all projection angles
and equals 2Lk . Thus the average f̄ will also have this value,

f̄ = 2Lk, (A.5)

thus proving the theorem.

Proof of theorem 3. We surround the axis curve x with a tube. As in section 2, there is a
family of secondary curves on the surface of the tube labelled by β; the β = 0 curve follows
x + εV̂. We will calculate L̃′ and T̃ ′ for the secondary curves in the tube surface. The next
step will be to average L̃′ − T̃ ′ over all the secondary curves, and show that this average only
depends on the geometry of the axis.

Let Ŵ = T̂ × V̂ so that {T̂, V̂, Ŵ} is an orthonormal right-handed frame. We consider
the neighbourhood of some point on the curve which is not a maxima or minima, so that we
can parametrize the curve by z. As twist and writhe do not change under a reversal of the
direction of the curve, we can assume λ = dz/ds > 0, i.e. σ > 0.

The secondary curve labelled by β passes through the points y(z, β) = x(z) + εÛ(z, β)

where

Û(z, β) = cos βV̂(z) + sin βŴ(z). (A.6)

Note that d(V̂ · V̂)/dz = 0, so V̂ · V̂′ = 0 (we will no longer write the (z) dependence
everywhere). Similarly, Ŵ · Ŵ′ = 0. Also, as V̂ · Ŵ = 0,

ω ≡ V̂′ · Ŵ = −V̂ · Ŵ′. (A.7)

These relations simplify the expression for the twist of the β curve, T̃ ′(z, β). From
equation (30) with σ > 0,

2π T̃ ′ = T̂ · Û × Û′ (A.8)

= T̂ × (cos βV̂ + sin βŴ) · (cos βV̂′ + sin βŴ′) (A.9)

= (cos βŴ − sin βV̂) · (cos βV̂′ + sin βŴ′) (A.10)

= ω. (A.11)

Note that the twist T̃ ′ is independent of β.
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x(s)x(s) r

y(s, )y(s, )β
UεU

y(s , )y(s , )β1

Figure A.1. The points x(z) = x(s), y(s, β) = x(s) + εÛ and y(s1, β) = x(s) + r.

Next consider L̃′ using equation (19), as well as equation (25) applied to just the single
pair x and y(β):

2π L̃′ = d	(x, y)

dz
= ẑ · r(z) × r′(z)

|r(z)|2 . (A.12)

Here r points from x(z) to the point on the secondary curve at the same height z (see figure A.1).
Let the arclength along the axis at the point x(z) be s. The tip of the r arrow is a point P on
the secondary corresponding to a different axis arclength s1:

y(s1, β) = x(s1) + εÛ(s1, β) (A.13)

≈ x(s) + εÛ(s, β) +

(
T̂(s) + ε

dÛ(s, β)

ds

)
(s1 − s). (A.14)

To first order in ε,

r = y(s1, β) − x(s) (A.15)

≈ εÛ(s, β) + T̂(s)(s1 − s). (A.16)

By definition rz = 0, so

s1 − s ≈ −εUz(s)/T̂z(s) = −εUz(s)/λ(s). (A.17)

Thus to first order in ε

r = ε(Û − λ−1UzT̂). (A.18)

We define R = r/ε. Then (in the limit ε → 0)

2π L̃′ = ẑ · R × R′

|R|2 , R = Û − λ−1UzT̂. (A.19)

To go further, we will need two new orthonormal frames, and decompose R in these
frames. Let µ = |ẑ × T̂|. The first new frame will be

{T̂, f̂, ĝ} = {T̂, ẑ × T̂/µ, T̂ × (ẑ × T̂/µ)}. (A.20)

(The case where T̂ is parallel to ẑ will be discussed at the end of the proof.) As V̂ and Ŵ are
perpendicular to T̂, we can write(

V̂
Ŵ

)
=

(
cos ψ(z) sin ψ(z)

− sin ψ(z) cos ψ(z)

) (̂
f
ĝ

)
(A.21)

for some angle ψ(z). Then from equation (A.6),

Û = cos(β + ψ)̂f + sin(β + ψ)̂g. (A.22)
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Next let

ĥ = ẑ × f̂ = −T̂⊥/µ, (A.23)

and go to the frame {ẑ, f̂, ĥ}. In terms of these vectors

ĝ = µ−1(ẑ − TzT̂) (A.24)

= µ−1((1 − λ2)ẑ − λT⊥) (A.25)

= µẑ + λ̂h, (A.26)

T̂ = λẑ − µĥ. (A.27)

Substituting for ĝ in equation (A.22) gives

Û = µ sin(β + ψ)ẑ + cos(β + ψ)̂f + λ sin(β + ψ)̂h. (A.28)

Finally, from equation (A.19)

R = cos(β + ψ)̂f + (λ + λ−1µ2) sin(β + ψ)̂h (A.29)

= cos(β + ψ)̂f + λ−1 sin(β + ψ)̂h. (A.30)

and

R2 = (cos2(β + ψ) + λ−2 sin2(β + ψ)). (A.31)

The z derivative is

R′ = cos(β + ψ)(λ−1ψ ′̂h + f̂′) + sin(β + ψ)(−ψ ′̂f + λ−1ĥ′ − λ′λ−2ĥ). (A.32)

We now proceed to calculate equation (A.19). Simple vector identities give

(̂f × ĥ′ + ĥ × f̂ ′) · ẑ = 0, (A.33)

which helpfully removes a few terms. Also,

f̂ × f̂ ′ = ĥ × ĥ′ = µ−2ẑ · T̂ × T̂′ (A.34)

= µ−2λ−1κBz. (A.35)

Combining equations (A.30) to (A.35) gives

ẑ · R × R′

R2
= λψ ′ − λ′ cos(β + ψ) sin(β + ψ)

(λ2 cos2(β + ψ) + sin2(β + ψ))
+

κ

λµ2
Bz. (A.36)

Suppose we now average this expression over all secondary curves in the tube, i.e., over
0 � β < 2π . The term involving λ′ vanishes, and the last term is unaffected. The first term
gives

λψ ′

2π

∫ 2π

0

1

(λ2 cos2(β + ψ) + sin2(β + ψ))
dβ = ψ ′. (A.37)

Thus equation (A.19) finally gives

2π L̃′ = ψ ′ +
1

λµ2
κBz. (A.38)
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Meanwhile, from equation (A.11),

2π T̃ ′ = ω = V̂′ · Ŵ (A.39)

= ψ ′ + (cos ψ f̂ ′ + sin ψ ĝ ′) · (− sin ψ f̂ + cos ψ ĝ ). (A.40)

Now the orthonormal vectors satisfy f̂ · f̂ ′ = ĝ · ĝ ′ = 0, while f̂ · ĝ ′ = −̂f ′ · ĝ, so

2π T̃ ′ = (ψ ′ + f̂ ′ · ĝ) = (ψ ′ + µ−2ẑ × T̂′ · (T̂ × (ẑ × T̂))) (A.41)

= ψ ′ +
λ

µ2
ẑ · T̂ × T̂′ (A.42)

= ψ ′ +
1

µ2
κBz. (A.43)

Thus

2πW̃ ′ = (1 − λ)

µ2

κBz

λ
. (A.44)

This proves the theorem for 0 < λ < 1. For vertical points on the axis curve (λ = 1)

the expression for W̃ ′ gives 0. This is expected, because for such points the rate of change of
linking L̃′ should coincide with the rate of change of twisting T̃ ′ (the first measures winding
about ẑ, while the second measures winding about T̂, and for vertical points ẑ = T̂). Thus the
theorem extends to vertical points.

Finally, if the axis parameter s is reversed, then λ → −λ and Bz → −Bz, but W̃ ′ should
not change. In this case

2πW̃ ′ = (1 − |λ|)
µ2

κBz

λ
= 1

2π

1

(1 + |λi |)
κBz

λ
. (A.45)

Proof of theorem 5. By equation (55),

W̃ ′
nonlocal = 1

2π

n∑
i=1

n∑
j=1

i �=j

σiσj	
′
ij (z). (A.46)

Consider the double sum of nonlocal terms. Some of the terms may vanish because pieces i
and j may not exist at the same height z (i.e. σiσj = 0 everywhere). Suppose two pieces i and
j do overlap in z, from some height zmin

ij up to some height zmax
ij . When we integrate over this

overlap, we obtain the difference between two angles. Let 	min
ij and 	max

ij be the orientations
of the relative position vectors rij

(
zmin
ij

)
and rij

(
zmax
ij

)
between the points xi and xj on the

curves at these two heights. Note that i < j and rij points from piece i to piece j . Also note
that for adjoining pieces, one of the angles will be the orientation of the tangent vector at the
join. (For example, in figure 4, 	min

12 = 	PC and 	max
12 = φB .)

With this notation,

W̃ij = σiσj

2π

∫ zmax
ij

zmin
ij

	′
ij (z) dz = σiσj

π

(
	max

ij − 	min
ij

)
+ wij . (A.47)

Suppose 	max
ij is not a tangent vector. At least one of the points xmax

i or xmax
j is at a local

maximum in z, say xmax
i . This point joins piece i with either piece i − 1 or i + 1. Suppose

it is i + 1. Consider W̃(i+1)j . From the previous equation, this will involve the angle 	max
(i+1)j .
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This angle is measured with the same point xi = xi+1, so 	max
(i+1)j = 	max

ij . But σi+1 = −σi ;
consequently

σi+1σj	
max
(i+1)j = −σiσj	

max
ij (A.48)

and the two terms cancel.
The same would hold true if the maximum were between i − 1 and i, or if it involved j

instead of i. Also, the cancellation of 	 terms occurs at minima as well. As a result, all of
the angles cancel except for the tangent vectors connecting adjoining pieces. (These do not
cancel because they only appear once.)

Now, for adjoining pieces σiσi+1 = −1. Let αi = −1 if the end of piece i is a maximum
and αi = +1 if it is a minimum. Also the angles 	 become the orientations φ of tangent
vectors. More precisely, except for the point joining piece 1 with the last piece i = 2m = n,
we can write 	i(i+1) = φi(i+1). Note that the point joining piece 1 with piece m has r1n reversed
with respect to the tangent vector. Thus 	1n = φn1 ± π .

Thus the nonlocal terms (including the winding numbers wij ) sum to

W̃nonlocal = 1

π

n−1∑
i=1

αi	i(i+1) +
1

π
αn	1n + 2w (A.49)

= 1

π

n−1∑
i=1

αiφi(i+1) +
1

π
αn(φn1 ± π) + 2w. (A.50)

Now at minima αiφi(i+1) = φ
(
zmin
i

) = φ
(
zmin
i+1

)
and at maxima αiφi(i+1) = −φ

(
zmax
i

) =
−φ

(
zmax
i+1

)
. Taking into account the double counting,

W̃nonlocal = 1

2π

n∑
i=1

(
φ
(
zmin
i

) − φ
(
zmax
i

))
+ (2w ± 1). (A.51)

Calculating mod 2 completes the theorem.
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